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POINTWISE STABILIZATION FOR COUPLED QUASILINKAR AND
LINEAR WAVE EQUATIONS

Goong Chen and Han-Kun Wang

Dopartment of Mathematice
Pennsylvania State Univeraity
Universily Park, PA 16802
USA

8l. Introduction.
A large structure is formed by the coupling of simple structural elements. In
this paper we atudy the eimpleat type of auch atructures which ia made up to two
coupled strings modelled by quasilinear or linear wave equations. We install two .
stabilizers: one at the (left) boundary and one at an in-epan point. We wish to study
the exponential atability property of thia coupled dynamic structure. The nonlinear

or linear partial differential equationa are described below:

aa? 2 aw(x, t _
Lot - Lo, (2] -0, 0 cx <1,
(nonlinear) (1.1)

a 3 (3w(x,t)
atlw(xyt) - 3; oll Ix ]] =

1
L
-
LY
x
LY
N

2 2
Twix,t) -2 B L g g oy c,

' ax?
{linear) (1.2)
a? lw(x, t
mﬂ(x,t)—c:—;‘;g—z=0. 1 <x <2,
where
o., 02 satisfy 0,(0) =0, o ,(u) >0, i = 1,2,
and
c, =vI7p , c; = vT3/p
T, = tension constant on string i, i = 1,2, '
p = mass density per unit length.
Supported in part by NSF Grant 84-01297A01 and AFOSR Grant 85-0253. The U.S. '
Government ie authorized (o reproduce and distribule reprints for governmental

purposes notwithstanding any copyright notation thereon.
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We huve tucilly assumed thal the mues densitics on both strings are ideutical. {ihia
information is contained in o, and ¢; in (l.1)). The length of each «tring hae
been normalized to 1.

At the left end x = 0, a stabilizer is installed eutisfying, respectively, the

following condition

0, (Wa(0,1)) = kowy (0,¢) = (for {1.1)), ka >0, (1.3)

2w (0,1) - kawg(0,t) = (for (1.2)), k3 » 0. (1.4)

At the intermediate node x = 1, another atabilizer ie instailed according Lo one of

the following two seta of dissipative trunsmission condilione (compare (2]} hold:

o, (W (17,t)) = aa(w,(17,0)), ]
(1.5)
we (17, 6)=we (1%, 8) = ~kijo, (w,(17,8)) (= ~kioa(w(1%,1))), ki » 0,

w(l™t)) = w(l*,t),
a ) 2 ]“'5)'
S (wa(17,8))=0, (W (1%,1)) = —Kowe (17,4) (= -kywe (1%,8)), k, » 0,

for the nonlinear system (1.1). For the linear system, the counterparts are

clw (17,1) = ciw, (1%, 1)
(1.6)

we (17, 8)=wy (1*,8) = —kiciwa(17,8) (= ~k,caw (1*,1)), ki » 0, ]

w(l™,t) = w(l*,t)
] 2 2 ] 2 ] (1.6)°
Cawe {17, t) = caw, (1%,0) = —kywe (17,0)(= -k ywe(1*,8)), k, » O.

Note that if k: =0 in (1.5), (1.5)', (1.6) or (1.6)', then there is no loss of
enerdy at x = 1 and the joint is conservative. We call k; and kf the feedback
guine at x = 0 and x = |,

At the right end x = 2, we may assume that it is either fixed or free:

w(2,t) = 0 (fixed end) (1.7)
w.(2,t) = 0  (free end) (.n’

We want to study the effects of atabilizers for coupled nonlinear and linear

vibrating strings as described above. We will be primarily concerned with the
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tollowing question:
Q) "When does__the solution of the above coupled wave equstions decay
The answer to the above question is well understood in the cue of a asingle

(nonlinear or linear) vibrating string. Greenberg and Li [6] proved that for (1.1),

T o e

(1.3) and a conservative boundary condition at x = 1, the solution decays

expoonentially in the C'-norm for any k: > 0, provided that the initial dste is . (0
sufficiently emall, amooth, and that appropriale compatibility conditions are satisfied.
In the linear csuwe, uniform exponential decay of energy followe as a simple exercise
of the method of characteristics. ' "
The problem of coupled vibrating strings is equivalent to that of a hyperbolic ] M
system. Some recent papers by Chen-Coleman-West (2] and Qin {9] have provided
partial answers to [Q) under study here. Another recent paper [7] by F.L. Huang ! !
has also introduced a direct way of proving exponential decay of solutions for linear
aystems. His method ia W establish 8 uniform bound of the resolvent aperator on the
imaginary sxis. In this paper, we will provide anawers to [Q] along the directions of '
{2], (7) and (9).

The organization of our paper is as follows. In @8II, we first give a

- - SOV

counterexample of Qin‘s theorem in [9) and setlate ite correct version. In §III, we
apply the corrected theorem of Qin to coupled nonlinear vibrating strings and state
some sufficient conditions for exponential decay of solutione with small data. [n 81V,

we apply Huang's theorem to give a complete answer to {Q] for coupled linear
strings.

Ryperbolic Systems with Digsipative Boundary Conditions ]
i
Let

du(x,t) . A(u(x,t))aug:'tz =0

It ' 0 «x <1, t >0 (2.1)

be a first order quadilinear hyperbolic aystem, whores u € B¥ and  A{u) 8 an NN

r 5 v _x

aufficiently swmooth matrix function of the variable u  onlv.

L’

As in [9]}, assume that

- e

(Al) System (2.1) is hyperbholic for sufficiently amall 1ul  in the following Hense: '
b
i) The matrix A{u) haa N amooth real oigenvuluen A (), A\ (1) and
b
A (0) 6 ... & A1) ¢ 0 ¢ Apy  {0) 6 ... 6 Ay(0). (2.0 !
g
o
L)
W
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) A(u) has N linoarly independent left eigonvectors

(J(U) = (fjn(u).---.f,n(u)). s, &N

corresponding to each real eigenvalue Ayfu).
Without luas of generality, we assume that the matrix

...... €in(u)

...... (;;(u)

ia identity when u = 0, i.e.,

[}

i

|

|

]

E

1 - ;

ro . .

‘.‘

t Due to (2.2) and (2.5), general boundary conditions for aystem (2.1) should have the
E

following forms:
. . .
L N
) .
) e LA
REAy®. Wy Lo D
SV SR %y a3

ull = F(ul) at

ul = g(ull) at

* . R™ 4 RN,

I} -0

are C'-amooth vector-vnlued functiona. We define

- o

»

(ORI Can (N m)x(N-m) matrix,

A A

o>
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) Y
(¥
a4 l:,
)
. F ) (
B, » Fi(;—‘(o) . ;—;T(O) { an mxm matrix, ':
where
LS
"
Fo_a(Fapy, ... F 3G . _a(Gy,...,6,) b
ul d(uy,.eeug) Jull F(Ugesyo-oyly) ~ )
' |.:
Let the initial condition of (2.1) be .
u{x,0) = ¢(x), 06 x &1, (2.8) )
n e,
In addition o (Al}), we asaume : :
o
. =
(A2) The initial and boundary conditions (2.8) and (2.7) selisfy the following:
i) F(0) =0, G(0) = 0. ' .
ii) At x =0 and x = 1, the following compatibility conditions are satijufied: , |:‘
S
3
¢11(0) = F(01(0)), #2(1) = G(e'I(1)) (2.9) ' g
. )
A2 (0(0) - 3ppr(0nar (000013540 : X
(2.10) 4 o
A
11 N
(A22(0(0) - 3Ep(91(0))a12(0(0)) 121D - o, :
~
. ",
At (o1 - Eperrayan eyl o
(2.11) iy
N
1 3
o) - Emeranareni_tl - o, »
5
where A'', A'?, A2' and A?? are blocka of sub-matricos of A corresponding to b
the decomposition u = {(ul,ull): '\
N,
)
At (u) AY2(u)
A(u) = . a by,
AII(u) A’I(u) .:
For any nxn square matrix M = (I,J), we define its absolute value matrix # . %)
by :\
)
W
v
9
b
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. ﬁ . ’.“0]')!\-1\'
‘, This matrix M satisfies the property that
1

& =
i . 1644n =1 ‘
J i where
i N
| T
) Avl, = wmax vyl for v =(vy,...,v,) € R",
: ! 1616n
[‘ S We thus define a norm 11 for M by
‘ Ko
13 .
. 1 n =
! 5 ML » max I Imyyl (o 1MD).
{ . 1616 §=1
'
(\ A We now state the "theorem” of T.H. Qin in (9). \J
e 3
| ¥
[ Ty
f Thecrem_0. Assume (Al) and (A2). Assume further that the apectral radii of B,
¢ and B, are less than 1. Then there exista 6 > 0 such that the mixed
. initinl-boundary value problem (2.1), (2.7), (2.8) admits a unique global emooth
{ solution u(t,x) for t a 0 and lu(t,-)lc‘(0 1 decays exponentially
S >
Yo
i W(t, g g.q) ¢ KO Ka >0, forall tag, (2.12)
provided that "'c°(o.1) + ¢ 'C"(O.l) < 8, where in (2.12), K depends on ¢ and
| . the rate of decay a is at least
a=- éﬂin§£ﬂ~5 (2.13)
' with
Amin ¥ 12}2..“"(7"(—6'.6')' (for 8’ > 0 some amal) nusber) (2.14)
/ , p {8 the amalleet positive integer making
N ]
max(1850,1851) = 0, < ) (2.15)
snd ¢ ia any real number in (o,,l). a

. It is well-known that solutions to quasilinear hyperbolic systems with samooth

L e A i O A"
)%y M T SN .--‘:\"_'\"}\'Z\‘fh.":\',\'g\.""\'l"l\. '*.ku.
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data develep shocks within finite duratlion. Therefore it is required in the conditions
of Qin's thecrem that the C'-norm of ¢ be sufficiently small. Thus normally
exponential stability (2.12) can only be expected for small data.

The conditions on the spectral radii of B, and B, in the slatement of
"Theorem 0" geem so intuitive and natural, as we anticipate that wavea would lose
strength exponentially after repeated reflections on energy uabsorbing boundaries.
Uanfortunately, the conclusgion {8 erroneous due to the fact that in a syutem there are
several waves travelling with different apeeds, thue their superpositions may form a
wave which is undamped. The following is a counterexample.

We consider a linear aystem formed by the coupled wave equationds (cf. (1.2))

2 3

Pwlant) - 8uint) -, D<x<l, t>0

2 2

Pulat) - omlul) ., lexe2, tao (2.16)
(e3> ci)

with boundary and transmiassion conditions

w(0,t) =0 at left end x = 0,
we(2,t) = 0 at right end x = 2,
we (17, )wy (1%, 8) = ~kiciw,(17,t) (2.17)
at x = 1, cf. (1.6).

c:w.(l‘.t). = c:w,(l’,t)

Let us trunsform them into 8 hyperbolic aystem by letting, for x € (0,1),

Wi, ) = glreadan,ty ¢ e u],
walx, 1) = 3eduinty ¢ T v,
w1 = 3wty + Lo v,
we(x,t) = Fleadwizx, ) + Lz, 0],

Then w = (w,,wji,W,y,w,) = (wlwll) (wl = (w,,w;), w!I = (ws,w.)) satisfice
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-3 0
(x,t) + € d_(x,t) = 0
at ’ C, Ix ’

0 [
wiI(Q,t) = [? _;]wl(ﬂ,t) & Dowl(0,t) (2.18)

. 2c, -cl+c,*k:C|C:
wi(l,t) = (c +eatkcicy)™t 2 wil(l,¢)
c-catkic ¢, 2c,

s D,wlil(]l,t).

It is easy to gee that (Al) and (A2)(i) are satisfied. (A2)(ii) is watiafied if the initinl
condition is chosen to satisfy Lthe compatibility conditions. (2.5) ie trivially satisfied.

Now, DD, is computed to be

. er-catkiesc, +2¢,
By = DoD, = -{c tc +kcyc,)7t ) ' (2.19)
-2C, c,-ca-k e 0,
which has eigenvalues
B,z < ”(Cl*Cz*k:cncl)-'(Cl‘ca‘lclcz(k:clca‘4)]'/’)- (2.20)

B, = D,D, has identical eigenvalues as B, = D,D, as given above. Ii is easy to
see that

Ty 2l €1, for any k; > 0.

Hence all of the hypotheses of "Theorem (" are satisfied.
We now prove that solutions to (2.18) do not decay exponentiully by showing
that the coupled wave system (2.15), (2.17) has at loasst some sigenvaluea located on

the imuginary axis. We write an eigensaolulion of (2.16), (2.17) as

eAt.l(x)- 04 x « 1]
wix,t) = (2.21)
erty,(x), 1 & x 62,

Thep

$.(x) - (A/e)?e,{x) =0, 0 &xsel,

(2.22)

0a{x) - (A/cy)2e5(x) 0, 1 6 x 6 2,

Due to the first two boundary conditions in (2.17), we have

T T TV W WL W TR T W

P

- f {?

-~
[}

. Y
s{-'-"'r by

5. a0l o
S‘-‘-‘_‘f.{j'

L 4
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0:(x) = Alexp(Axsc,) ~ exp(-Ax/ey}], 0 &x &),
(2.23)
02(x) = Ajlexp(A(x-2)/c,; + exp(~A(x-2)/c3)], 1 6 x & 2.
The second two tranamission conditions in (2.17) impoae that
c A Alexp(A/c,) + exp(-A/c,)] = caAarlexp(-A/ca) - exp(A/c,)])
A, [exp(A/c,) -~ exp(-A/c,)] - AM;lexp(A/ca) + exp(~A/ca)l (2.24)
+ k:c.A,x[exp(A/c,) + exp(-A/c,)) = 0. !
Thorefore all eigenfrequencies A are determined by
(ex/c'-e—x/c')+k:c,(eA/c'¢e—A/c‘) _(eA/C:§e‘R/C:) )
0 = A = det (2.25)
c.(ch‘oe'Vc‘) c,(eA/c'—e_A/c')

- cl[e(l/cl*l/c:)k\’e'(l/cl_l/cz)k*e(I/C:_l/ca)k4e‘(l/Cl’l/C:)Al

. CI[e(1/C.*l/c,)x,e-(l/C.-l/C:)A_e(l/cn-l/ca)A,e-(l/CHIICa)A]

. k:c‘c'[e(l/c.*l/Cz)A*e-(l/crl/cz)k_e(I/C.—l/ca),\_e-(l/c1+l/C;)A].

Let the wave speeds on two strings be commensurable:

%‘- = %, L,M are relatively prime positive integers, L < M. (2.26)
3 3

Write A ® iMc,B8, 8 € €. Then (2.25) becomes
A= c (e (t)B 4 et (n+L)B 4 ot (m-0)B 4 e~ t{m-L)8) (2.27)
+ calet(MHL)B 4 o=t (n+L)B et (M=L)B - g-1(n-1)B]
+ klcicalet(mHL)B — o 1 (m+L)B et (n-U)B  o~1(n-1)0)
= 2¢,[cos(M+L)B + cos(M-L)B8] + 2c;[cos(M+L)B - cos(M-L)B)
+ i 2kic,cilsin(ML)B - sin(M-L)B].

Then 4 = 0 if and only if

(cy+ca)cos(MHL)B + (c,-cz)cos(M-L)B = 0
(2.28)

sin(M+L)8 - sin(M-L)8 = O.

Rk Sl
e gt i3
Loy <
Y 53 ?& el '
;:“ . - ’ - : * ) R o - !
' - - ;" ."-: - ‘4. L e ) Lo L t'i';-,‘ ‘ |

Uy T g N o« g LI LR L R R IR O NN CI I P e
Ve,V S G850 AU 7S VU IS Vi A R I M S MV Y e PR



149

it
PR L - 2n < M=
C, M 2n+1"’ (L 2n, n+l)

dntl ), ci-ca - Ei%Tc.. and (2.28) gives

then M+L = 4n+l, M-L = 1, c,4C,

{4n+1)cos(4n+1)B - cosB
(2.29)

n
o
——

sin(4n+1)B - sing8 = 0.

It i8 obvious that B8 = n/2 i8 a golution of (2.29). Hence

A = iMc,8 = i[n + %}ﬂc“ any positive integer n,

ie an eigenfrequency of (2.16), (2.17) which is undamped as Re A = 0, This is a
counterexample to "Theorem 0”.

The fallacy of "Theorem 0" is due to the fact thal in {9] the author has
forgotten to take certain absolute valuoe between steps (52) - (54) in (9, pp. 295-
296}. The mistakes can be eusily corrected by changing B,, B, in the statement of

“"Theores 0" to i., ﬁ,. We state the corrected version of Qin's theorem below:

Theorem 1. Assume (Al) and (A2). Assume further that the spectral radii of !-_4, and
ﬁ, are less than 1. Then there exists & > 0 such that the mixed initial-boundary
value problem (2.1), (2.7), (2.8) admits a unique global smooth solution u(t,x) for

t a0 and Bdu(t,-)l decays exponentially

C'(0,1)
lu(t,-)lc,(o’l) & Ke @t K,a> 0 for all t » 0, (2.30)
provided that “IC°(0,1) 4+ “.'C"(O,l) < 8§, where in (2.30), k depends on ¢ and

the rate of decay a i3 at least

A ‘In o
= - . -
a —“-‘-“——zp ' (2.31)

with

Amin @ min A 1 (for some mmall &' > 0)

161 6én co(-6',8") '

p is the smuilest positive integer muking

max(18°0-1850) = ao < 1 (2.32)

DO EOA0E DI L s NI X o P o
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AR,
Al

and ¢ is any real number in (o0,,!). Q

Note that the above correction imposes very severe restrictions on matrices B,
and B,. It does not apply to many cuses studied in [2) e.g. as one realizes that in
{2] the spectral radii of B, and B; are lesa than 1, but those of l:!. or !=3, are

usually not less than 1.

8111. Coupled Nonlinear Vibrating Strings with Point Stabilizers.

Let us first consider the ayatem (l.1), (1.3), (1.5) and (1.7). We will transform
the syatem into a form which sllows the application of Theorem 1.

Without loes of generality, we assume that

91(0) » 03(0). (3.1)
Define
yi(x,t) = i!%f;&l_ ya(x,t) = - %;w(Z-x.tL
(3.2)

2 (x,t) = L) oy = %;w(Z-x,t),

Ix '

for x ¢ (0,1), t > 0. Use the following Riemann invariants to diagonalize the aystem:

Y
u & 3z, + [ ETTATam),
o

v, i=1,2. (3.3)
Ug—y & '(21 - I Yo {midn),
o
Then u = (u;,uz,uy,u,) = (ul,ufI)(ul! = (u,,u,), ull = (u,,u,)) ~retisfies
-c;(uy-uy) 0 0 0
2_ 0 ~ca(ua-us) 0 0 d _
gttt 0 0 caluz-uy) PR (3.4)
0 0 0 cy (uy-uy) )
0«<x<«<1, t>O0,
where
c((y) = v TO(¥77, i=1,2, (3.5)
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denotes the wave apeed on string

u(y)
Yy = j vaT{mJ dn.
o

We now traneform boundary and tranemission conditions (1.3), (1.7) and (1.5) in

terms of wu:

uy(0,t)

ull{o,t) = [ ] = F(ul(0,1))
u (0,t)
u,(1,t)

ul(o,¢) = [ ] = G(ull(0,t))
u(1,t)

where F(0) = G(0) = 0, and

Fy(ul) = Fy(uz) = -u,

Walg o db

du, du,

Fe(ul) = Fe(uy)

3F, _ o (u;-Fy(uy))-ke {\ar.

du, Cl(“l‘F-(“n))*k; ' du,

Fy _ .

du,

96 . 2

du, c.+c,+k:c.c,

4G, - c.-c,*k:r,cl

dJu, c.'c,'k:c.c, ¢, =
cy =

4Gy _ -cloclfk:clcl
du, c.bc,+k:c.c,

4Gz _ 2c
du, c,+c,¢k:c.c,

Therefore

e

i, and Uf(y)

|
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is defindoed 1mplicitly by

lFs(U'(O.l) ]
Fe(ul(0,1))

[Gn(u"(l.t) ]

Ga(uli(l,t))

1),

e (Gy(ull)-u,)

= €3(Ga(ull)-uy).

e

AR
2 ‘;ug“?“

B TP I

W
o«
e - . - -"‘..“
A !\;H':" \'.\"‘-'F\ é\.ﬂ.. hﬁ A

(3.6)
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dby  dF, v -1

du, Ju
aF - -
FIASR FLFTIN At PR o

du, du, Cl(o)’k:

36, 3G,
G du, du, ] -
EETT(O) = G, G, (0) = [c,(0) + c3(0) + k;c,(0)c,(0)]

duy du,

2¢,(0) €, (0)-c,(0) +kic, (0)c,(0)
-C.(O)oc,(O)*k:c,(O)c,(O) 2¢,(0)

The reader can see that the matrix D, in (2.18) looks almost like the transpose
matrix of the matrix above.
So

c.-c.-k:c.c, -2c,
B, = [Cl‘ca’k:clcal_‘
kg ] ci-ka
2¢, - ETTF% (c.—c,+k.c,c,);f:;§
[ ]
cl-k; K 2
c,*k'(c'-c’+ 1C1C3) ~2C,
B, = [C|+Ca*k:c|c:]—' °
3
2c, - Ef%%% c.—c,-k:c.c,
o

where in the above, we: have abbreviated ¢,(0) and ¢,(0) as ¢, and c,,

respectively. Under the previous assumption that ¢, » ¢; (i.e., (3.1)), we have

Ic.—c,“k:C|c,| 2c,
ﬁ: = KC.'Ca'k:C.C:l"
2¢c; K !C.‘Ca'k7“1032l Kk
C k3 C17Ro C +kJ Cy~Ko
v o 1o
(3.7)
K, 2¢,A7!

2c, A7 'K, K, Ky
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; :
; ("1"'A‘k:CLCA)'C1'k:n| s :;
[ = 3 - c +k? =~ )'.
: By = [cytcytkic,c,) v e B
) Y. A
Ez_::(';‘ 'Cl'k:' |C.—C,-k:C|C,| &
1] o
1
K, Ky 2c,A7! (3.8) '
| 2e,ak K ' W,
‘ Cc; 87 'K, 2 V|
1 ) ﬁ*
4
where in the above &2
b,
l’l
: A s C;*Cz\‘k:cmz :f?
! . I
K, ®» A7!(c,-catkiCyCa) .u"'
3 (3.9) ZFE
Ky 8 A7YIc,-c-kcrc,yl 4
&%
Ky ® 1cy-ko1/(ci+ka). )
\ B 2 ‘
The spectral radii of B, and B, are determined from IAl of o~
-: v
H £ '
det(A-B,) = det(A-B,) = AT-(K,Ky+K;) MK, K,Ky~4c,c,87 %Ky = 0. (3.10) n
~.
LY
According to Theorem 1, a sufficient condition for exponential decay of solutions with ]
{, "'\
a3

small data is that the roots A,, A; of (3.10) satisfy

oz

max( (A 1,1A;1) « L. (3.11)

PR
P "

The above can be determined by the standard Routh satability criterion in automatic

wp 'v:)

control as followa. Let us use the following Mobius transformation mapping the

-

interior of the unit circle into the left half plane:

ot g

_ ozl .
A= (3.12)

(A4 'i.\.:l

,
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Substituting (3.12) into (3.10), wo get

Roz? + Az + Ay = 0 (3.13)

where

Ao % 1+K,K3+K3+K K Ks-4c,ca8" 7Ky (> 0)

A, ® 2(1-K,K,Kytdc,c;477Ky) (3.14)

Ay 8 1-K Ky-Ky+K K;Ky-4¢,c 47 2K,

Condition (3.11) is now equivalent to that (3.13) has no roote on the open right half
plane. This can be determined by the Routh criterion as follows:

Ao A,

- - -.—>-.0'~

A0 b, » 2282780 . 3, (3.15)
- A,

B, o©

Therefore (3.11) is satisfied if and only if the following condilion ie satiafied:

The first column Ao, Ay, By, (= A;) in (3.15) ie of one sign
and R. z 0, X, 20, i.e., all of coefficients Ko. Z. and K, (3.16)

in (3.13) are nonzero and positive.

We summarize the above in

Theorem 2. Assume (Al) and (A2) as in &11. If k; >0 and k: »0 in (1.3) and
(1.5) are chosen such that (3.16) is satisfied, then the exponential decay property :
(2.30) holds for (1.1), (1.3), (1.5) nnd (1.7} provided that the initinl datn eix}

aatiafica compntibility conditions and haw aufficiently amnll ' -norm 0

From condition (4. 16Y it ta not debfocult to choeck thnt ot k: o 0, wee onm
always find k? ~ O auch that  conditaion (3.16)  1a ant b yed, Thet ectaar e
o
axponential atnbility (for amnll datn)  con always be achieved by uning n wingle |

atabilizer ot the Teflt end  x O To peatizatar, we evamine the cnae de? n t
'
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‘:‘ 1 g T e T i gl Ve W ey ey T gty 1 S o R S S S L S R G
ettty L Lot B2 B ) B 0 - e ! o) Gl Baly B afs .l

M SASGAS

o r.:



1e gty gia gt NN U RR NN L FLRURL WL WL WL VWU Y. WURC WL W W w W e W T AU R RO N o ¥ Y RN W ¥ U L g
.
| oy,
' v ——————————. ] +
l S,
) L]
| | '
) - .
] ' t
» 55 )
4 ' O A
) \ 3 2 2 2 ‘
Y . ;' 21 - Slea g kot -lgl cal [(;| (:‘] feg-kot  Acye, te, kot . P .|
Y : Cyte, an; CyrC, C ¢, c.'k; (¢ 4cy)? c.d(; w o]
. )

If k: is chosen equal (or very close) to c,, we will always get ;, > 0, R, » 0.

NG

' This is well known in wave propegution theory as k; 3 ¢y in (1.3) corresponds to

. the characteristic impedence boundary condition which causes maximum energy loss of \* :
: waves at x = 0. Indeed, the closer k; to c, is, the smuller the power p in ' : %
, (2.32) becomes. Therefore the rate of decay a in (2.31) will become larger. On the ",
! other hand, if k: is not close to c¢,, then K. and R, may easily become P

negative, therefore Theorem 2 will no longer be applicuble. This is in sharp

' contrust to the lineur cuse (cf. Theorem 7 luter) where k: > 0 cun be arbitrary %r |
‘ 3 - oy
] . when k‘ 0. > \
] L}
L] 1;
What happena if k: = 07 Can we get exponentiul stubility by using only one Y
stubilizer in the middle (x = 1)? The reader cen easily check that condition (3.16) i
is never satisfied no mutter what value k: > 0 is chosen. In fact, in general the “a:
solution will not decay exponentially as the linear countecrexample in SI1 has '4§
4
already shown. One might wonder whether nonlinearity would work any differently. The ?
answer is still no as the following theorem suggests. J\'}
%o
™
Theorem 3. Assume that k2 = 0 in (1.3). Then there are C?-golutions to (l.1), :\:
(1.3), (1.58), (1.7) which are undomped for any k: » 0, for sume nonlinear o,, ¢,. F:;;
Lt ]
o
Proof. We first note that when k: =0, (1.3) becomes ESF‘
¢ .‘
. N
w, (0,t) = 0. (1.3 N
D
-\'
Wa first assume that the following boundary vnbue problem -':.C‘
~ d 4 - ) . I,
TR A P AN 0, 0 x 1 :I::
wifh,ty 0 SRR t e
: oR
w, (1,1) 4] \.)
o
hudw an andamped C? solition for certian g. Then we onn consibeveet nn unedmng e .“
solution for (1.1}, (1.2}, (1.5}, (1.7) na follown. Define =
-
) A
wi %, t), 1« x <0, o
- "
y{x,t) = wix, t) 0 x <1, A
Vi

wi2 %, Uy, L «ox « 2




v _pav . v _gat gae v et mav T YOy . 0 B Bat gat_gav pa.
I T R T O O T T T O T TR S o e e, "~ A

L8
-

3
7
)
f
r
Ht L
i .
: yiox- 1,0, 0« x <1, ey
w(x,t) =
yix,t), 1< x <2, -“
‘ >4
] 1
AL x =0, _‘y
0
. w(07,t) = w(0*,t) = 0, we (07, 1) = w,(0%,t), gt
we (07, t) = w (0F,t) = 0, w, (07,L) = w,,(0%,t),
wee (07,t) = wy (0%, t) = 0, -
~
"-_).
8o y € C3(-1,1) and w e C*(0,1). w sutisfies Y
! ~
%
3w 3 [l 1 aw)] _ A=
at‘-a[io'z's;]]-o. 0 <x<«1], t>»0 ’
\ o )
! 3w _ 3 aw :-'
at,-x—a[— E” =0, l1<«<x<«2, t>»0. “,:
N'.
y ‘\::
' Set !
i o
)
1 (1 S
\ a,(n) "i"[i n]. Ny
h }\,.u
\«
oa(n) & ~o(-1). 0
: Ny
Then o,(0) =0 and o, » 0, i = 1,2, and w saliafies (1.1). At x = 0 and ¢, ':
wa(0,t) = 2y, (-1,t) = 2w, (1,t) = O, :._-;
- ~
w(2,1) = y(0,t) = w(0,t) = 0. o
K
At x = 1, s
-.\
- )
w(17,t) = wo(1*,t) = 0 ;
we(17,t) = we (1%, 1) N
| t [ [} v ’ i\
i o
‘ so (1.5) is satisfied. Hence w isa a C?-goluton of (1.1}, (1.3)', (1.5), (1.7) which is RS
undamped. -:::
Butl Greenberg {5] has proved thal with )
)
N
L _ A4/ '\.ﬁ
| a(n) = 3C2[A - W , | -A, co > O, A0, :x.’
)
(3.17) has a C?solution which is undumped. T
The proof of Theorem 3 ia complete. o] !
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Therefore we can wsafely slate that in_genarsl_sxponential_atability cannot_be

attained by using only one_ stabilizer at the middle of the apan for coupled (linear or

nonlinear) wave_equations.

Although we have used the Riemann invarianta u in (3.3) to give proofe and
deduce stability reasults, the plain fact is that haere as in [6] and (9] and in many
other similar papers the approach is essentially based on linearization aboul the zero
solution u = 0. Theorem 2 is but one of the many examples of the principle of

linearized atability which is valid for a large clags of general nonlinear distributed

aystems.
The case when the intermediate conditiona and boundary condition are changed

to (1.5)' and/or {1.7)' can be studied aimilarly without any difficulty.

§1V. Couplied Linear Vibrating Strings with_Point Stabilizera.

In this section we study the exponential stability problem for the coupled linear
aystem (1.2), (1.4), (1.6) and (1.7). Other transmission condition (1.6)' and boundary
condition (1.7)' can be treated in a similar way.

Previously, several remsearchers (1], (2], (3], [8) have etudied this type of
problem using energy identities or the method of characteristics. We have tried both
methoda for eystem (1.2), (1.4), (1.6) and (1.7), yet we could not succeed in

eatablishing an affirmative answer to (Q] for our problem for any wave speeds c,,

c; and any gain constants l_t:_lgl I_(:_I_O_. The difficulty probably can be
interpreted as follows:
i) At the coupling point x = 1, there are reflections and tranemissions of waves
which the energy multipliers are nol sophisticated enough to handle.
ii) For coupled linear stringa the method of characteristica worka best when the
wave speeds are identical, i.e., ¢, = c,, cf. (2], yielding sharp decay estimates for
a (cf. (2.12)). Otherwise, this method is not convenient for coupled atrings.

Of course, one¢ could also apply the nonlinear Theorem 2 to coupled linear

strings. But such a result would not be sharp as the guin coefficients k: and k:

become severly restricted due to the conditions ori the spectral radii of [:i. and l:l..
A recent theorem of F.L. Huang offers an extremly uweful way to prove

exponentinl atability for lincar uwystema:

£
: o S
! .. - ;i' Theorem 4 {7]. lLet A be the infinitesimal genorator of a (,-somigroup oxp(tA),
P s 'é*~i-_7.a| which satisfies
f

%

(4

lexp(tA)l & B,, t & 0, for some By > 0. (4.1)

) B Then exp(tA) ia exponentially stable (i.e, texp(tA)l & Ke 3%, K,a » 0, t » 0) if and

4]

. ,'

only if

\ \';{";Q'ﬁ’x"t;, } "‘;"Zf.-‘-f'
o et ‘.,;

. oo,
- s
C T ' . L R I
] Y b her ot BN .
L ' i A . RSNy
SRR g g e
et S ’ Rt ”‘l A ﬂt o et
- ~ PRI 2 o8 o \ s . ~

W S e L A R I S A S A P A A O i S S R A S S S

A o - .

Y

o X

s St
By

[
('}

o,

bl A%

oL RN

]:').'-'/.

5

i

A B

ey
2ttt
.”. \"\"h

A A
%
l"

e
ot n s

-

I e
»
[

P
et} J

s
y G4

o A
s

a
o Y0 e

LS

(U

e s v e

f{ﬁfﬂ'

% % %Yy

.
[ A4

Y
¥ [

a

RN

R
277

o

“",' L
AR



58
(1wlw € R} € p(A), the resolvent set of A; (4.2) ‘
and
B, & sup({#(iw - A)7'1l lv ¢ R) < = (4.3)
are satisfied. o ‘

This theorem has recently been applied in [4], e.-., to establish an exponential
stability result for an Euler-Bernoulli beam with bending moment proportional
control.

Now we are in a position to apply Huang's Theorem 4 to (1.2), (1.4), (1.6), {1.7}).
l.Let ua recast the problem into an equivalent hyperbolic system: For x e (0,1),

define t

uy(x,t) = %[—C. %;w(x.t) + %w(x.t)].

e ¢
u{x,t) = %[c, %x—w(Z-x.t) + ':—tw(z-x.t)].
Al
1 ? 3
us(at) @ 3f-ea Lwiznv) + Swizx 0], b
1 2 3
ug(x,t) = Z[C. F;u(x.t) + Hw(x,t)]. v
)
Then (1.2) becomes E
4
u, -Cy 0 0 0 uy :
dJuil _ |0 -ca O 0{2_ |u,
dtfusl " O 0 ca 0|dax [us " Au. (4.4) "
u, 0 0 0 Cy Uge :
After straightforward calculations, we get from (1.4), (1.6), (1.7) the following )
boundary conditions:
At x = 0,
2
0 cl—k,’,_
ul(0,t) = € tkg 1ur1(0,t) & Dult(o,1). (4.5)
-1 0
;
| L At x = 1,
r. ,"4/; - 2c, -c.*c.*k:c‘c, .
ull(1,t) = &= , » ul(l,t) ® Dyul(l,t), (1.6) ;
c,~cytkyc,c, 2¢, .
i g !
Ce el 2
el ‘:‘-‘&;‘ where A = c;+c;+k,cyc3, ul = (u,,uy) and ull = (u,y,u,). v
Ny Obviously, the underlying Hilbert space is X » [L?(0,1)]* and
‘
]
w
; ,
v , : L et
4
!

e,
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&

D(A) = {u e X ! ue [H'(0,1)]*, u satisfies (4.5) and (4.6)). (4.7)

(The space H!'(0,1) is the Sobolev space of order 1).

Al

We solve the resolvent equation

o
g
(A - iv)u = f, weR, feR is arbitrary, : > ¢t
(4.8) ‘.‘\1
u € D(A), satisfying (4.5), (4.6) 4
o~
Writing out the above componentwise: )
4:").
l."k
(e - o = 1 >
d . W
(-cagg =~ iw)ua = 1, ’
(c.%x- - iw)uy = fy ‘l‘
LY
(e - ie) c "—‘
cio— - iw)uy = f,, YA
Lo, 0
LN
-
we get )
e
l.
_ e x . ie [N,
;x 1 <y X Y
u(x) = ve - I e . (€)deE, o
1 ° '
[ ]
iw x iw N
B U i
w0 =vee - fe T Uncode, X
2o ,\:;
) (4.9) ™~
R o
wx) = vse 0 v e r0de, o
Ca ° "
Y
o 1L f o %o
Us(x) = v.e B ! e ! fo(€)d¢E, '-'r
Cy : -'.‘
ol
: s
. where vy,, 1 € i 4 4, are determined from (4.5), (4.6): .
= B S
. ) AN
. - ! Y] - Do Y ‘. -
. Ya (4] ~
L} .‘.-.
A iw ig ,".J
‘ - i (4.10) e
L ;.'__v_’:‘:: ! yse ? + F Yie '-F R,
- - io = D, iw ' -~
W e y,ec' + F, Yie € F, A
"4 B
. ¢
{ C 4
1

AT { -
JIACXACAN
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.
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£,000dE, J = 1,2

(1-¢)
fs—-J(f)dfn J = 3,4.

Therefore
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Lol oL o

L

-iu[l— + ! R
Ca Lg(cl_c!+klclci)e
°

-2¢c,e rie/e,

.

Proposition 5. Llet « > R and k: x 9, k: » 0. Then

e, 8845

tdet(D-1)0 » 8§, Vv w € R,

for some & > 0.

det (D-1)

e

2iw
Cy

Y %y

C

" lz,] + "—“c,::; (z.]e

o T FE IR T YN

, Y
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2
- ]
tdet(D-1)1 a 1z 0 - LCaKel 4, 4,

N
3
3

c +h?
3 o
It suffices to show that
1z,0 » Bz,0, for all w ¢ R (4.14)
and
02,0 » § > 0, for some & > 0, for all o € R. (4.15)

But by direct calculationas,

[}
—
——
0
¢
n
4'
I‘"
L
nn
Oﬂ
\__a
-~
n
#!
Oﬂ
+¢
I'l'
o
OO
OQ
L.
-

-2 (c +c +k:c c.)? o8 _;
. __Bkic.cl (1-cos2) a0, forail wer
= (clbc,Ok:clci)’ Ca ’ '

So (4.14) is verified.
Inequulity (4.15) is obvious from the definition of 2z, in (4.13), becsuse

c,-ca-kic,c ci-cpkicye 2

- = - it -

—‘-—1—*—*—‘A —L—J——‘—uc e kic | ¢ 1, for any k, » 0.
1 3 [ O N |

Therefore the proof is complete. a

Lemma 6. The operator A defined in (4.4), (4.7) salisflies conditions (4.1) -
(4.3), provided that k: » 0, k: » 0.

D
L
E::' Proof. (4.1) is trivinlly satisfied because A is a dissipative operator. (4.2) followse
h'.: from Propoaition 5 because equaliona (4.12), (4.10) and (4.9) are all solvable for any
E:a given f ¢ X ) -\
.*' Finally, (4.3) is satisfied because in (4.11) -
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are satisfied and because of Proposition 5, (4.12), (4.16), (4.10) and (4.9).
a

Hence we conclude

Theorem 7. Under tLhe assumptions k: » 0, k: » 0, the energy of the coupled linear
vibrating strings (1.2), (1.4), (1.6) and (1.7) decays uniformly exponentially.
4]

Therefore, for coupled linear strings, one stabilizer (k: s 0, k: =0) is
sufficient to cause exponential decay of energy. The feedback gain k: can be
chosen arbitrarily.

By etraightforward calculutions, one can easily see from (4.12) that Proposition
5 in general does not hold if k: = 0, k: »0 (i.e., only one stabilizer is
inatalled in the middle of the apan), unleea ¢, and ¢, satisfy certain special
relations, such as c¢,/c, = 2, e.g. More importantly, this exponential stabilly is not
robust with respect to c./c; in the sense that if c,/c; differs just slightly from
2 (or certain given number), then exponential stability no longer holds.

Therefore we see that a point stabilizer installed at the boundary is robust
with respect to exponential stability for coupled nonlinear and linear vibrating

strings.

B & Y
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